domingo, 8 de abril de 2012

Reino Monera


 O reino monera é formado por bactérias, cianobactérias e arqueobactérias (também chamadas arqueas), todos seres muito simples, unicelulares e com célula procariótica (sem núcleo diferenciado). Esses seres microscópios são geralmente menores do que 8 micrômetros ( 1µm = 0,001 mm).
 As bactérias (do grego bakteria: 'bastão') são encontrados em todos os ecossistemas da Terra e são de grande importância para a saúde, para o ambiente e a economia. As bactérias são encontradas em qualquer tipo de meio: mar, água doce, solo, ar e, inclusive, no interior de muitos seres vivos.
Exemplos da importância das bactérias:
na decomposição de matéria orgânica morta. Esse processo é efetuado tanto aeróbia, quanto anaerobiamente;
agentes que provocam doença no homem;
em processos industriais, como por exemplo, os lactobacilos, utilizados na indústria de transformação do leite em coalhada;
no ciclo do nitrogênio, em que atuam em diversas fases, fazendo com que o nitrogênio atmosférico possa ser utilizado pelas plantas;
em Engenharia Genética e Biotecnologia para a síntese de várias substâncias, entre elas a insulina e o hormônio de crescimento.
 Estrutura das Bactérias
Bactérias são microorganismos unicelulares, procariotos, podendo viver isoladamente ou construir agrupamentos coloniais de diversos formatos. A célula bacterianas contém os quatro componentes fundamentais a qualquer célula: membrana plasmática, hialoplasma, ribossomos e cromatina, no caso, uma molécula de DNA circular, que constitui o único cromossomo bacteriano.
A região ocupada pelo cromossomo bacteriano costuma ser denominada nucleóide. Externamente à membrana plasmática existe uma parede celular (membrana esquelética, de composição química específica de bactérias).
É comum existirem plasmídios - moléculas de DNA não ligada ao cromossomo bacteriano - espalhados pelo hialoplasma. Plasmídios costumam conter genes para resistência a antibióticos.
Algumas espécies de bactérias possuem, externamente à membrana esquelética, outro envoltório, mucilaginoso, chamado de cápsula. É o caso dos pneumococos (bactérias causadoras de pneumonia). Descobriu-se que a periculosidade dessas bactérias reside na cápsula em um experimento, ratos infectados com pneumococo sem cápsula tiveram a doença, porém não morreram, enquanto pneumococos capsulados causaram pneumonia letal.
A parede da célula bacteriana, também conhecida como membrana esquelética, reveste externamente a membrana plasmática, e é constituída de uma substância química exclusiva das bactérias conhecida como mureína (ácido n-acetil murâmico).

Vírus


 Vírus (do latim virus, "veneno" ou "toxina") são pequenos agentes infecciosos (20-300 ηm de diâmetro) que apresentam genoma constituído de uma ou várias moléculas de ácido nucléico (DNA ou RNA), as quais possuem a forma de fita simples ou dupla. Os ácidos nucléicos dos vírus geralmente apresentam-se revestidos por um envoltório protéico formado por uma ou várias proteínas, o qual pode ainda ser revestido por um complexo envelope formado por uma bicamada lipídica.
  As partículas virais são estruturas extremamente pequenas, submicroscópicas. A maioria dos vírus apresentam tamanhos diminutos, que estão além dos limites de resolução dos microscópios ópticos, sendo mais comum para a visualização o uso de microscópios eletrônicos. Vírus são estruturas simples, se comparados a células, e não são considerados organismos, pois não possuem organelas ou ribossomos, e não apresentam todo o potencial bioquímico (enzimas) necessário à produção de sua própria energia metabólica. Eles são considerados parasitas intracelulares obrigatórios, pois dependem de células para se multiplicarem. Além disso, diferentemente dos organismos vivos, os vírus são incapazes de crescer em tamanho e de se dividir. A partir das células hospedeiras, os vírus obtêm: aminoácidos e nucleotídeos; maquinaria de síntese de proteínas (ribossomos) e energia metabólica (ATP).
  Fora do ambiente intracelular, os vírus são inertes. Porém, uma vez dentro da célula, a capacidade de replicação dos vírus é surpreendente: um único vírus é capaz de multiplicar, em poucas horas, milhares de novos vírus. Os vírus são capazes de infectar seres vivos de todos os domínios (Eukarya, Archaea e Bacteria). Desta maneira, os vírus representam a maior diversidade biológica do planeta, sendo mais diversos que bactérias, plantas, fungos e animais juntos.

O que é TAXONOMIA?


 Taxonomia (do grego τασσεῖν ou tassein = "para classificar" e νόμος ou nomos = lei, ciência, administrar) foi a ciência de classificar organismos vivos (alfa taxonomia). Mais tarde a palavra foi aplicada em um sentido mais abrangente, podendo aplicar-se a uma das duas: classificação de coisas ou aos princípios subjacentes da classificação. Quase tudo - objectos animados, inanimados, lugares e eventos - pode ser classificado de acordo com algum esquema taxonômico.
 Alguns afirmam que a mente humana organiza naturalmente seu conhecimento do mundo em tais sistemas. Esta visão é baseada frequentemente na epistemologia de Immanuel Kant.
 Antropologistas têm observado que as taxonomias são inerentes à cultura local e aos sistemas sociais, servindo a várias funções sociais. Talvez o estudo mais bem conhecido e mais influente de taxonomias populares seja o The Elementary Forms of Religious Life de Emile Durkheim . As teorias de Kant e Durkheim influenciaram também Claude Lévi-Strauss, o fundador do estruturalismo antropológico. Lévi-Strauss escreveu dois livros importantes em taxonomias: Totemism e The Savage Mind.
 Taxonomias como as analisadas por Durkheim e Lévi-Strauss são chamadas às vezes de taxonomias populares para distingui-las das taxonomias científicas, que sustentam a dissociação das relações sociais e assim chegar ao objetivo e ao universal. A mais famosa e mais extensamente utilizada taxonomia científica é a taxonomia de Lineu, que classifica as coisas vivas e foi criada por Carl von Lineu. Este sistema taxonómico pode ser encontrado no artigo árvore evolucionária.

Teoria da Panspermia - Arrhenius

Panspermia é uma das teorias de origem e evolução da vida, que afirma que a vida é fruto de sementes dispersas no Universo, e que a Terra é apenas um dos planetas que recebeu essa semente, que se propagou com o passar do tempo, dando origem a todos as formas vivas existentes hoje.
Anterior à Panspermia, a teoria aceita era a de Geração Espontânea, que defendia que a vida era oriunda de matéria desprovida de vida. Depois de vários estudos científicos, a abiogênese (do grego, a = sem, bio = vida, gênese = origem, “origem não biológica”) foi derrubada, hoje sabemos que a vida é somente procedente de matéria viva.
Segundo a teoria da Panspermia, formulada pelo físico sueco Arrhenius, a Terra teria sofrido uma inseminação por organismos, partículas provenientes de espaços externos ao planeta, chegando à Terra através de poeira cósmico ou meteoritos. O argumento apresentado para tal hipótese é a presença de matéria orgânica em meteoritos encontrados na Terra, como certos tipos de aminoácidos, formaldeído, álcool etílico, tese que foi contradita pelo fato de não ser admitida a sobrevivência de microrganismos a temperaturas tão diferentes da qual são procedentes. Além disso, tais moléculas podem se arranjar de maneira natural no ambiente, sem ter, para isso, qualquer influência biológica.

Teoria de Aristóteles


A geração espontânea ou abiogênese
Esta teoria aborda as visões históricas da origem da vida. Foi elaborada há mais de 2.000 anos, e seu criador foi Aristóteles. Ele afirmava que: a vida surge espontaneamente de uma matéria bruta e não viva e que era possuidora de um “principio ativo” ou “força vital”.
Um dos argumentos usados por ele, por exemplo, era o das larvas e insetos que surgiam próximos de alimentos como carnes e frutas estragadas.
No ano de 1668, Francesco Redi contrariou a teoria de Aristóteles. Ele realizou pesquisas que provaram que a vida não surgia espontaneamente de matérias não vivas.
A teoria de Redi é chamada de biogênese, e envolve a idéia de que a vida se origina de uma vida já preexistente.
A experiência de Redi foi feita com moscas, e ele provou que estas não se originavam da carne, mas sim de outras moscas já preexistentes. 

Teoria da vida de Oparin



A Teoria de Oparin é uma de várias teorias , tentando responder à pergunta Se um ser é gerado de um ser precedente, como surgiu o primeiro ser? depois da teoria de geração espontânea ter sido derrubada por Louis Pasteur em 1864. É a mais aceita pelos astrônomos. Diz que a vida na Terra surgiu há cerca de 3,5 bilhões de anos, surgindo o primeiro ser vivo a partir da combinação de elementos químicos presentes na Terra primitiva.
Por volta de 1930, um cientista russo chamado Aleksandr Oparin formulou uma nova hipótese para explicar a origem da vida. Isso culminou com seu livro A Origem da Vida.
Oparin possuía conhecimentos em astronomia, geologia, biologia e bioquímica e os empregou para a solução deste problema.
Por seus estudos de astronomia, Oparin sabia que na atmosfera do Sol, de Júpiter e de outros corpos celestes, existem gases como o metano, o hidrogênio e a amônia. Esses gases são ingredientes que oferecem carbono, hidrogênio e nitrogênio. Para completar estava faltando o oxigênio, então pensou na água.
Para Oparin explicar como poderia haver água no ambiente ardente da Terra primitiva, ele usou seus conhecimentos de geologia. Os 30 km de espessura média da crosta terrestre constituídos de rocha magmática deixam sem sombra de dúvidas a intensa atividade vulcânica que houve na Terra. É sabido que atualmente são expelidos cerca de 10% de vapor de água junto com o magma, e provavelmente também ocorria desta forma antigamente.
A persistência da atividade vulcânica por milhões de anos teria provocado a saturação de umidade da atmosfera. Nesse caso a água não mais se mantinha como vapor.
Oparin imaginou que a alta temperatura do planeta, a atuação dos raios ultra-violeta e a ocorrência de descargas elétricas na atmosfera (relâmpagos) pudessem ter provocado reações químicas entre os elementos anteriormente citados, essas reações daria origem a aminoácidos.
Começavam então a cair as primeiras chuvas sobre o solo, e estas arrastavam moléculas de aminoácidos que ficavam sobre o solo. Com a alta temperatura do ambiente, a água logo evaporava e retornava à atmosfera onde novamente era precipitada e novamente evaporava e assim por diante.
Oparin concluiu que aminoácidos que eram depositados pelas chuvas não retornavam à atmosfera com o vapor de água e assim permaneciam sobre as rochas quentes. Presumiu também que as moléculas de aminoácidos, sob o estímulo do calor, pudessem combinar-se por ligações peptídicas. Assim surgiriam moléculas maiores de substâncias albuminóides. Seriam então as primeiras proteínas a existir.
A insistência das chuvas por milhares ou milhões de anos acabou levando ao aparecimento dos primeiros mares da Terra. E para estes mares foram arrastadas, com as chuvas, as proteínas e aminoácidos que permaneciam sobre as rochas. Durante um tempo incalculável, as proteínas acumularam-se nos mares de águas mornas do planeta. As moléculas se combinavam e partiam-se e novamente voltavam a combinar-se em nova disposição. E dessa maneira, as proteínas multiplicavam-se quantitativa e qualitativamente.
Dissolvidas em água, as proteínas formaram colóides. A interpenetração dos colóides levou ao aparecimento dos coacervados.
É possível que nessa época já existissem proteínas complexas com capacidade catalisadora, como enzimas ou fermentos, que facilitam certas reações químicas, e isso acelerava bastante o processo de síntese de novas substâncias.
Quando já havia moléculas de nucleoproteínas, cuja atividade na manifestação de caracteres hereditários é bastante conhecida, os coacervados passaram a envolvê-las. Apareciam microscópicas gotas de coacervados envolvendo nucleoproteínas. Naquele momento faltava apenas que as moléculas de proteínas e de lipídios se organizassem na periferia de cada gotícula, formando uma membrana lipoprotéica.
Estavam formadas então as formas de vida mais rudimentares.